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BACKGROUND

Often, it is beneficial for the eyecare professional

to predict the finished thickness of a pair of

spectacle lenses. Determining the change in

thickness that results from the patient�s use of a

different frame or lens style is a common example.

Patients investing a considerable amount of money

into thinner and lighter lenses want to know just

how thin their new lenses will be. This is a

question that often strikes fear in the hearts of

unprepared opticians. Those armed with the

knowledge required to provide the answer,

however, quickly earn the respect of their

patients. Even these opticians face a greater

challenge today, since the advent of newer high-

index lenses.

REVIEWING SURFACE GEOMETRY

The purpose of this article is to present the

procedures and formulas necessary to calculate the

thickness of an ophthalmic lens. We will use

relatively precise equations at first, and then go on to

develop simpler expressions from these that can be

utilized for estimating the approximate thickness. It

will be shown that these simplified methods will

provide reasonably accurate values for your patient,

without the need for tedious, time-consuming

mathematics.

The first step towards determining the thickness of a

given lens is developing an understanding of the

relationship between surface power, diameter, and

thickness. The thickness, or depth, of a surface curve

at a given diameter (d) is known as its sagitta (s), or

simply sag. The sag of a curve is shown in Figure 1.
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Figure 1. The sagitta of a lens surface.

For a given convex or concave curve, described by a

radius of curvature r, the sagitta s can be found using

the Pythagorean Theorem,
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But first, we have to determine the radius of

curvature. For a given surface power FS and index of

refraction n, the radius of curvature r can be found as
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That sure is quite a bit of math, though! If we assume

that s will be relatively small compared to r, we can

simplify the sag formula and substitute the last

equation for r to give us this relatively accurate

equation,
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Ignore the (±) sign of the surface power (FS); use only

the absolute value for the sagitta. Stronger surface

powers produce shorter radii of curvature. Hence, for

a given diameter, the sag is directly proportional to

the surface power and will increase as the power of

the surface increases.* Further, as most opticians

certainly know, the sag will also increase as the

diameter of the lens increases, as shown in Figure 2.
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Figure 2. Diameter versus sagitta.

Now that we know how to calculate the thickness of a

surface, we need to consider the form of the entire

lens. Most modern lenses are meniscus in form,

having convex front curves and concave back curves.

                                                          

*If the exact formula is used, it can be shown that the

sag of a curve actually increases slightly faster than

its power; this is especially true for larger diameters.
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If the dioptric value of the front curve is greater than

the value of the concave back curve, the lens will be

positive (plus) in power. Similarly, if the dioptric

value of the back curve is greater than the value of the

convex front curve, the lens will be negative (minus)

in power. Because these lenses have two surface

curves, we need to consider the sag of both the front

curve (s1) and the back curve (s2) for determining

thickness.

Generally, we are concerned with finding the

maximum thickness of the lens. This will be the

center thickness of plus lenses and the edge thickness

of minus lenses. These lenses are often produced with

a certain amount of minimum (or additional)

thickness, as well. Therefore, in addition to the

thickness of each curve, we also need to add

additional edge thickness for plus lenses (the thinnest

point of the lens) and additional center thickness for

minus lenses (also the thinnest point of the lens).

Figure 3 depicts the factors affecting the final center

thickness of a meniscus plus lens.
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Figure 3. A meniscus plus lens.

To determine the final center thickness of a plus lens,

use

EdgeCenter 21 +−= ss

To determine the final edge thickness of a minus lens,

use

CenterEdge 12 +−= ss

Yes, this is also a bit complex for a world demanding

fast answers. When dealing with spectacle lenses of

low-to-moderate power and reasonable diameter,

however, we can further simplify the process by

ignoring the surface curves and form of the lens

altogether! This is simply an extension of our earlier

sagittal approximation, which says that the sag of a

curve will be directly proportional to its power. So,

how is this possible?

This is possible because the surface powers of a lens

(F1 and F2) must vary at the same rate to provide a

given lens power F, so that*

21 FFF +=

                                                          

*This relationship holds true for thin lenses, and is in

line with our approximation.

As a consequence, the sags of each curve must also

vary at the same rate. Therefore, the difference

between the sags will remain constant as the surface

powers change.
1

To visualize this concept, consider the form of the

lens as being flat, so that the lens power is produced

by one surface curve with a single sagitta. The flat

plus lens will have a convex front curve and a plano

(flat) back curve, while the flat minus lens will have a

plano front curve and a concave back curve. With the

use of our approximation, the difference between the

sags of the front and back curves will remain

constant.

At this point, we merely have to add the desired

amount of minimum thickness to determine the final,

maximum thickness of the lens. These simplified

lenses are illustrated in Figures 4 and 5.
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Figure 4. A plano-convex plus lens.
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Figure 5. A plano-concave minus lens.

We will now substitute the power of the lens (F)�

ignoring the (±) sign�for the surface power (FS) in

our simplified sag formula,
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And, to determine the final maximum thickness of the

lens, use the expression

MinimumThickness += s

And now a word about minimum center thicknesses...

The manufacturer�s center thickness guidelines ensure

that these lenses will have enough thickness to

provide acceptable flexural stability and impact

resistance.

Most minus lenses will be either surfaced to or

supplied in finished form with centers between 1.0

mm and 2.2 mm, depending upon the type of lens

material and design. Lenses intended for rimless or

safety frames, for instance, may be slightly thicker.

To make things even easier, we can solve the

equation for various values of the diameter d and the

index n in advance. A table of such constants, which

are called K-values, can be prepared and kept readily

available.
2
 From this point on, to approximate the
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maximum thickness for a given index and diameter,

we need to only multiply the appropriate K-value (K)

by the power F of the lens. Remember to also add the

minimum thickness. A sample table of K-values is

provided later on in Table 1.

MinimumThickness +×= KF

So far, so good�right? Up to this point, we have

assumed two things: a lens power and a lens blank

diameter. Obviously, the power should be known. If

the diameter is unknown, a few more computations

may be necessary. It is important to note that the

center thickness of a finished plus lens is fixed with

respect to the initial diameter of the lens blank. Once

cast, plus lenses can only be surfaced to smaller

diameters and thinner centers. When using finished

plus lenses, the factory blank size should be utilized

for determining the center thickness.

The patient�s frame dimensions and interpupillary

distance (distance PD) are required to determine the

minimum blank size for a given pair of eyeglasses.

The minimum blank size will be the smallest lens

diameter required for a particular frame and lens

combination. The dimensions of a typical spectacle

frame, using the boxing system, are illustrated in

Figure 6.
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Figure 6. The Boxing System.

Once the optical center has been decentered from the

geometric center, the minimum blank size (MBS)

becomes equal to twice the effective radius (ER) of

the decentered lens, which is the distance from the

decentered optical center (OC) to the farthest point

along the eyewire: MBS = 2 × ER.

This distance can be estimated with a simple frame

measurement. An easy rule of thumb to remember for

single vision lenses states that the minimum blank

size MBS is approximately equal to the sum of the

effective diameter ED of the frame and twice the

required decentration (Dec), or

Dec2EDMBS ×+=

The effective diameter is twice the distance from the

geometric center (GC) of the frame to the farthest

point along the eyewire. The ED is essentially the

minimum lens diameter that will completely

encompass the frame, in the absence of decentration.

If we know the patient�s interpupillary distance (PD),

the eyesize (A) of the frame, and the width of the

bridge (DBL), we can find the decentration (Dec)

with

2

PD-DBL+A
=DEC

Combining both equations gives us

PD-DBL+A+ED=MBS

It should be apparent that this rule of thumb method

does not consider the frame shape or the angle of the

effective diameter. Determining the actual effective

radius of the lens will be more accurate, when

possible. Once the lens has been decentered, the

effective radius will usually be located along the mid-

line and toward the temporal edge of the frame. For

harlequin, aviator, and similar styles with high or low

temporal corners, the effective radius may be

displaced up or down slightly, as shown in Figure 7.
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Figure 7. Some exotic frame shapes.

In general, myopic (nearsighted) patients are more

likely to be concerned with the thickness of their

lenses, since the edges of their minus lenses are quite

visible to others. Let�s take a closer look at

calculating the edge thickness of a minus lens.

But first, we need to discuss lenses that require a

cylinder component, since these lenses complicate

matters somewhat. For simplicity, we are specifically

concerned with the effective power of the lens

through the horizontal (180°) meridian. The effective

radius should be close to this meridian. For increased

accuracy, you may choose to determine the effective

power through the actual meridian of the effective

radius.
3

If the axis of the sphere power is close to 180°, the

power of the lens through the horizontal meridian

(F180) is roughly equal to the sphere power S.
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Table 1 K-values (Interpolate diameter values between the 5-mm increments)

If the axis is close to 90°, the power through the

horizontal meridian (F180) is roughly equal to the sum

of the sphere and cylinder powers (S and C). For

prescriptions with an oblique axis θ, between 90° and

180°, the contribution of the cylinder power must be

determined using the sine-squared rule,

θ
2

180 sin⋅+= CSF

Now we can tell how much cylinder power C to add

to the sphere power S for a given axis θ. It�s really for

those math buffs out there. For everyone else, get one

of those handy cylinder distribution charts or learn

the values for axes like 30° (25%), 45° (50%), 60°

(75%), 90° (100%), 120° (75%), 135° (50%), and

150° (25%).

Keep in mind that, for a given diameter, the thinnest

edge will be through the axis meridian of minus

cylinder lenses, and the thickest edge will be through

the power meridian. With these tools in mind, we can

summarize the entire method for predicting the edge

thickness of a minus lens.

4 Steps for Estimating Edge Thickness

1.  Determine the minimum blank size using the

effective diameter, eyesize, bridge, and PD

measurements (or the effective radius, if this is

known).

2.  Determine the power of the lens through either

the 180° meridian, or the effective radius

meridian. Ignore the (±) sign.

3.  Determine the lens material (or the refractive

index), and look up the nearest K-value from the

table.

4.  Multiply the power by the K-value, and add the

minimum thickness to this.

This method, although simplified, will provide an

acceptable degree of accuracy when precision is not

critical. For higher plus and minus powers of rather

large diameter, the exact formulas described earlier

should be employed. This is especially true for lens

surfacing. The center thickness of sphero-cylindrical

plus lenses may also be affected by the axis of the

cylinder in some cases, but that discussion is beyond

the scope of this paper. Otherwise, you can expect

acceptable results for most situations.

We will conclude the discussion with an example.

Your patient, Nancy Cantsee, comes in with the

following prescription:

OU -3.00 DS -1.00 DC × 045

PD 62 mm

She selects a stylish round frame with a 52-mm

eyesize, a 54-mm ED, and a 16-mm bridge. You are

fitting her with SOLA�s Spectralite
®
 ASL finished

aspheric lenses.

1.  The minimum blank size needed here is

approximately equal to:

 PD-DBL+A+ED=MBS

 62-16+52+54=MBS

 mm 60=MBS

2.  The effective power through the 180° meridian

of these lenses is:

 θ
2

180 sin⋅+= CSF

 ( ) 45sin00.100.3 2

180 −+−=F

 D 50.3180 −=F  (Ignore ± sign.)

3.  You are using Spectralite
®
, which has a K-value

of 0.83 at a 60mm diameter.

DIAMETER

MATERIAL 40 45 50 55 60 65 70 75 80

Hard Resin 0.40 0.51 0.63 0.76 0.90 1.06 1.23 1.41 1.60

Crown Glass 0.38 0.48 0.60 0.72 0.86 1.01 1.17 1.34 1.53

Spectralite
®

0.37 0.47 0.58 0.70 0.83 0.98 1.13 1.30 1.48

Polycarbonate 0.34 0.43 0.53 0.65 0.77 0.90 1.05 1.20 1.37

1.6 High-index 0.33 0.42 0.52 0.63 0.75 0.88 1.02 1.17 1.33

1.66 High-index 0.30 0.38 0.47 0.57 0.68 0.80 0.93 1.07 1.21

1.7 Glass 0.29 0.36 0.45 0.54 0.64 0.75 0.88 1.00 1.14
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4.  The finished ASL lens has a 1-mm center

thickness, which gives us a total of:

Minimum+s=Thickness

( ) 183.050.3Thickness +=

mm 3.91=Thickness

The final answer: 3.91 mm. It is interesting to note

that our estimation is within 0.15 mm of what the lens

would actually produce! However, greater errors may

be encountered depending upon the lens form, power,

and finished diameter.

It should be kept in mind that the approximations

described here are not entirely accurate for aspheric

surfaces. For instance, the geometry of the ellipsoidal

aspheric surface described in Figure 8 will afford a

slightly smaller sag value than a comparable spherical

surface of the same diameter. Consequently, the

sagitta calculations previously described should only

be used for an estimation of thickness.

Spherical

Aspherical

Sag

Difference

Figure 8. The difference in sag values between a spherical

and a comparable aspheric surface.

Thickness is obviously a very important aspect of

ophthalmic lenses. However, consideration should

also be given to other factors that contribute to the

overall cosmesis of a pair of eyeglasses. For instance,

materials with lower densities will be lighter in

weight, and flatter base curves will reduce the

bulbous appearance of the lenses. Although a

discussion of these factors would be out of the scope

of this article, they should certainly be given equal

attention when fitting eyewear.
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